Download Arithmetic, Geometry and Coding Theory (AGCT 2003) by Yves Aubry, Gilles Lachaud PDF

By Yves Aubry, Gilles Lachaud

Résumé :
Arithmétique, géométrie et théorie des codes (AGCT 2003)
En mai 2003 se sont tenus au Centre foreign de Rencontres Mathématiques à Marseille (France), deux événements centrés sur l'Arithmétique, l. a. Géométrie et leurs functions à los angeles théorie des Codes ainsi qu'à los angeles Cryptographie : une école Européenne ``Géométrie Algébrique et Théorie de l'Information'' ainsi que l. a. 9ème édition du colloque overseas ``Arithmétique, Géométrie et Théorie des Codes''. Certains des cours et des conférences font l'objet d'un article publié dans ce quantity. Les thèmes abordés furent à los angeles fois théoriques pour certains et tournés vers des purposes pour d'autres : variétés abéliennes, corps de fonctions et courbes sur les corps finis, groupes de Galois de pro-p-extensions, fonctions zêta de Dedekind de corps de nombres, semi-groupes numériques, nombres de Waring, complexité bilinéaire de los angeles multiplication dans les corps finis et problèmes de nombre de classes.

Mots clefs : Fonctions zêta, variétés abéliennes, corps de fonctions, courbes sur les corps finis, excursions de corps de fonctions, corps finis, graphes, semi-groupes numériques, polynômes sur les corps finis, cryptographie, courbes hyperelliptiques, représentations p-adiques, excursions de corps de classe, groupe de Galois, issues rationels, fractions maintains, régulateurs, nombre de sessions d'idéaux, complexité bilinéaire, jacobienne hyperelliptiques

In may well 2003, occasions were held within the ``Centre foreign de Rencontres Mathématiques'' in Marseille (France), dedicated to mathematics, Geometry and their functions in Coding conception and Cryptography: an eu college ``Algebraic Geometry and data Theory'' and the 9-th overseas convention ``Arithmetic, Geometry and Coding Theory''. a number of the classes and the meetings are released during this quantity. the subjects have been theoretical for a few ones and became in the direction of purposes for others: abelian types, functionality fields and curves over finite fields, Galois team of pro-p-extensions, Dedekind zeta services of quantity fields, numerical semigroups, Waring numbers, bilinear complexity of the multiplication in finite fields and sophistication quantity problems.

Key phrases: Zeta capabilities, abelian types, capabilities fields, curves over finite fields, towers of functionality fields, finite fields, graphs, numerical semigroups, polynomials over finite fields, cryptography, hyperelliptic curves, p-adic representations, classification box towers, Galois teams, rational issues, persisted fractions, regulators, excellent category quantity, bilinear complexity, hyperelliptic jacobians

Class. math. : 14H05, 14G05, 11G20, 20M99, 94B27, 11T06, 11T71, 11R37, 14G10, 14G15, 11R58, 11A55, 11R42, 11Yxx, 12E20, 14H40, 14K05

Table of Contents

* P. Beelen, A. Garcia, and H. Stichtenoth -- On towers of functionality fields over finite fields
* M. Bras-Amorós -- Addition habit of a numerical semigroup
* O. Moreno and F. N. Castro -- at the calculation and estimation of Waring quantity for finite fields
* G. Frey and T. Lange -- Mathematical heritage of Public Key Cryptography
* A. Garcia -- On curves over finite fields
* F. Hajir -- Tame pro-p Galois teams: A survey of modern work
* E. W. Howe, okay. E. Lauter, and J. best -- unnecessary curves of genus 3 and four
* D. Le Brigand -- genuine quadratic extensions of the rational functionality box in attribute two
* S. R. Louboutin -- particular higher bounds for the residues at s=1 of the Dedekind zeta capabilities of a few absolutely actual quantity fields
* S. Ballet and R. Rolland -- at the bilindar complexity of the multiplication in finite fields
* Yu. G. Zarhin -- Homomorphisms of abelian kinds

Show description

Read or Download Arithmetic, Geometry and Coding Theory (AGCT 2003) PDF

Best number theory books

Sequences of Numbers Involved in Unsolved Problems

Over three hundred sequences and plenty of unsolved difficulties and conjectures with regards to them are provided herein. The publication includes definitions, unsolved difficulties, questions, theorems corollaries, formulae, conjectures, examples, mathematical standards, and so forth. ( on integer sequences, numbers, quotients, residues, exponents, sieves, pseudo-primes/squares/cubes/factorials, nearly primes, cellular periodicals, features, tables, prime/square/factorial bases, generalized factorials, generalized palindromes, and so on.

Additional resources for Arithmetic, Geometry and Coding Theory (AGCT 2003)

Example text

The following result gives a dramatics improvement to Ax-Katz’s, and MorenoMoreno’s results for certain diagonal equations. 2. — Let q = pf and let di be a divisor of q m−1 + q m−2 + · · · + 1 for i = 1, . . , n. Let a1 X1d1 + · · · + an Xndn be a polynomial over Fqml . Then pµ divides |N |, where µ (n − m)lf . ´ ` 11 SEMINAIRES & CONGRES ON WARING NUMBER FOR FINITE FIELDS 31 Let s be the smallest positive integer such that the equation xd1 + · · · + xds = β has at least a solution for every β ∈ Fpf .

2. — Note that cases g(6, 223) > 2, g(8, 761) > 2 imply that the lower bound on pf cannot be improved to (d − 1)3 , since 223 > (6 − 1)3 = 125, 761 > (8 − 1)3 > 716. Let N 4,0 be the number of solutions of the equation xd1 + xd2 + xd3 = βxd4 with x4 = 0 over P(Fpf ) and N 4,1 be the number of solutions of the equation xd1 + xd2 + xd3 = βxd4 with x4 = 0 over P(Fpf ). Now we estimate how large has to be Fpf to obtain that g(d, pf ) 3. 3. — g(d, pf ) 3 whenever p2f > (d−1)(d−2) [2pf /2 ]+ d1 ((d−1)4 +(d−1))pf .

Let f (X, Y ) ∈ Fq [X, Y ] be an absolutely irreducible polynomial such that m := degX f (X, Y ) = degY f (X, Y ). Then we have lim n→∞ #{paths of length n in Γ(f, Fq )} >0 mn if and only if there exists an indecomposable component ∆ of Γ(f, Fq ) whose vertices all have in- and out-degree equal to m. A graph ∆ as in the corollary above has the property that it is a finite indecomposable component of the graph Γ(f, Fq ), since the number of arcs that occur in ∆ is the maximal possible number. Using the above results, we can prove a partial answer to Conjecture 1 (see end of Section 2).

Download PDF sample

Rated 4.80 of 5 – based on 49 votes

About admin